The effect of moist convection on the tropospheric response to tropical and subtropical zonally asymmetric torques

Abstract

Tropospheric winds can be altered by vertical transfers of momentum due to orographic gravity waves and convection. Previous work showed that, in dry models, such zonally asymmetric torques produce a pattern of tropical ascent that is well described by linear dynamics, together with meridional shifts of the midlatitude jet. Here a series of idealized models is used to understand the effects of moisture on the tropospheric response to tropical and subtropical zonally asymmetric, upper-tropospheric torques. The vertical motion response to a torque is shown to be amplified by the reduction in effective static stability that occurs in moist convecting atmospheres. This amplification occurs only in precipitating regions, and the magnitude of subsidence in nonprecipitating regions saturates when clear-sky radiative cooling balances induced adiabatic warming. For basic states in which precipitation is concentrated in an intertropical convergence zone (ITCZ), most of the vertical motion response is thus confined within the basic-state ITCZ, even when the torque is remote fromthe ITCZ. Tropical and subtropical torques perturb the extratropical baroclinic eddy field and the convectively coupled equatorial wave field. Resulting changes in momentum flux convergence by transient eddies induce secondary meridional overturning circulations that modify the zonal-mean response to a torque. The net effect allows tropical torques to merge a double ITCZ into a single equatorial ITCZ. The response of tropical transient eddies is highly sensitive to the representation of convection, so the zonal-mean response to a torque is similarly sensitive, even when the torque is located in the subtropics. { extcopyright} 2013 American Meteorological Society.

Publication
J. Atmos. Sci.
Date